Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry
نویسندگان
چکیده
Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.
منابع مشابه
Experimental study on the influence of dimethylamine on the detection of gas phase sulfuric acid using chemical ionization mass spectrometry (CIMS)
Based on quantum chemistry calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment was set up at the CLOUD aerosol chamber to test the quantitative detection of H2SO4 by CIMS by directly comparing the ...
متن کاملThe effect of H2SO4 – amine clustering on chemical ionization mass spectrometry (CIMS) measurements of gas-phase sulfuric acid
The state-of-the art method for measuring atmospheric gas-phase sulfuric acid is chemical ionization mass spectrometry (CIMS) based on nitrate reagent ions. We have assessed the possible effect of the sulfuric acid molecules clustering with base molecules on CIMS measurements using computational chemistry. From the computational data, three conclusions can be drawn. First, a significant fractio...
متن کاملMolecular steps of neutral sulfuric acid and dimethylamine nucleation in CLOUD
We have run a set of experiments in the CLOUD chamber at CERN, Switzerland, studying the effect of dimethylamine (DMA) on sulfuric acid (SA)-water nucleation using a nitrate based Chemical Ionization Atmospheric Pressure ionization Time-Of-Flight Mass Spectrometer (CI-APiTOF). Experiment was designed to produce neutral high m/z SA-DMA clusters in close to atmospherically relevant conditions to ...
متن کاملPerformance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry
The performance of an ion source based on corona discharge has been studied. This source is used for the detection of gaseous sulfuric acid by chemical ionization mass spectrometry (CIMS) through the reaction of NO−3 ions with H2SO4. The ion source is operated under atmospheric pressure and its design is similar to the one of a radioactive (americium-241) ion source which has been used previous...
متن کاملHomogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions
In this study the homogeneous nucleation rates in the system of sulfuric acid and water were measured by using a flow tube technique. The goal was to directly compare particle formation rates obtained from atmospheric measurements with nucleation rates of freshly nucleated particles measured with particle size magnifier (PSM) which has detection efficiency of unity for particles having mobility...
متن کامل